Research projects
The research engagement includes funded projects between Microsoft researchers and MIT professors and students.
Projects funded in 2019
Distributed, Private and Efficient Machine Learning
Vinod Vaikuntanathan (MIT), Yael Kalai (Microsoft), Lisa Yang (MIT)
State-Based Approaches for Verifying and Testing Neural Networks
Martin Rinard (MIT), Shuvendu Lahiri (Microsoft), Madan Musuvathi (Microsoft), Kai Jia (MIT)
Safe Online Reinforcement Learning in Networked Systems
Mohammad Alizadeh (MIT), Siddhartha Sen (Microsoft), Hongzi Mao (MIT)
Off-policy evaluation for risk-aware autonomous systems
Cathy Wu (MIT), Alekh Agarwal (Microsoft), Adith Swaminathan (Microsoft), Vindula Jayawardana (MIT)
Exploration of robust machine learning for high-stakes predictions
John Guttag (MIT), Eric Horvitz (Microsoft), Maggie Makar (MIT), Agni Kumar (MIT)
Projects funded in 2018
ML with Theoretical Grantees
Stefanie Jegelka (MIT), Matthew Staib (MIT), Hongzhou Lin (MIT)
Towards ML you can Rely on
Aleksander Madry (MIT), Dimitris Tsipras (MIT), Kai Xiao (MIT)
Robustness meets Algorithms
Ankur Moitra (MIT), Sitan Chen (MIT), Allen Liu (MIT)
Efficient and Explainable ML Algorithms using Coresets
Daniela Rus (MIT), Cenk Baykal (MIT), Lucas Liebenwein (MIT)
Bayesian ML: uncertainty and robustness at scale
Tamara Broderick (MIT), William Stephenson (MIT), Raj Agrawal (MIT), Lorenzo Masoero (MIT), Ryan Giordano (MIT)
Faculty & student collaborators
Professor Daniela Rus
Professor Aleksander Madry
Professor Stefanie Jegelka
Processor Ankur Moitra
Professor Tamara Broderick
Professor Vinod Vaikuntanathan
Professor Martin Rinard
Professor Mohammad Alizadeh
Professor Cathy Wu
Professor John Guttag
Compute resources
Microsoft is proud to provide the students and faculty at CSAIL and MIT in this collaboration with Azure compute resources to assist in the pursuit of addressing concerns about the trustworthiness and robustness in AI systems. For questions about resources please contact Jessica Mastronardi.
TRAC Colloquia
These events comprise two invited guests who present first their 20-min long (and usually complementary) perspectives on the chosen topic and then participate in a mini-panel:
December 15, 2020, 1pm-3pm Eastern/10am-12pm Pacific: What does robustness mean in ML?
Speakers: Ludwig Schmidt (UC Berkeley/UW) and Jacob Steinhardt (UC Berkeley)
Moderators: Jerry Li (MSR) and Ankur Moitra (MIT)
May 24, 2021, 11am-1pm Eastern/8am-10am Pacific: Causal inference and sequential decision-making
Speakers: Susan A. Murphy (Harvard) and Jonas Peters (University of Copenhagen)
Moderators: Emre Kiciman (MSR) and Cathy Wu (MIT)